Short-term synaptic plasticity compensates for variability in number of motor neurons at a neuromuscular junction.
نویسندگان
چکیده
We studied how similar postsynaptic responses are maintained in the face of interindividual variability in the number of presynaptic neurons. In the stomatogastric ganglion of the lobster, Homarus americanus, the pyloric (PY) neurons exist in variable numbers across animals. We show that each individual fiber of the stomach muscles innervated by PY neurons received synaptic input from all neurons present. We performed intracellular recordings of excitatory junction potentials (EJPs) in the muscle fibers to determine the consequences of differences in the number of motor neurons. Despite the variability in neuron number, the compound electrical response of muscle fibers to natural bursting input was similar across individuals. The similarity of total synaptic activation was not due to differences in the spiking activity of individual motor neurons across animals with different numbers of PY neurons. The amplitude of a unitary EJP in response to a single spike in a single motor neuron also did not depend on the number of PY neurons present. Consequently, the compound EJP in response to a single stimulus that activated all motor axons present was larger in individuals with more PY neurons. However, when axons were stimulated with trains of pulses mimicking bursting activity, EJPs facilitated more in individuals with fewer PY neurons. After a few stimuli, this resulted in depolarizations similar to the ones in individuals with more PY neurons. We interpret our findings as evidence that compensatory or homeostatic regulatory mechanisms can act on short-term synaptic dynamics instead of absolute synaptic strength.
منابع مشابه
Morphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons
Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...
متن کاملAspirin changes short term synaptic plasticity in CA1 area of the rat hippocampus
Introduction: The prostaglandin E2 (PGE2), a cyclooxygenase (COX) product, play critical roles in the synaptic plasticity. Therefore, long term use of COX inhibitors may impair the synaptic plasticity. Considering the wide clinical administration of aspirin and its unknown effects on information processing in the brain, the effect of aspirin and sodium salicylate on the short term synaptic p...
متن کاملRepeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo
Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...
متن کاملExperimental methods for examining synaptic plasticity in Drosophila.
The Drosophila neuromuscular junction (NMJ) ranks as one of the preeminent model systems for studying synaptic development, function, and plasticity. In this article, we review the experimental genetic methods that include the use of mutated or reengineered ion channels to manipulate the synaptic connections made by motor neurons onto larval body-wall muscles. We also provide a consideration of...
متن کاملNotch signaling is required for activity-dependent synaptic plasticity at the Drosophila neuromuscular junction.
The cell-surface-signaling protein Notch, is required for numerous developmental processes and typically specifies which of two adjacent cells will adopt a non-neuronal developmental fate. It has recently been implicated in long-term memory formation in mammals and Drosophila. Here, we investigated whether activity-dependent synaptic plasticity at the neuromuscular junctions (NMJs) of third ins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 45 شماره
صفحات -
تاریخ انتشار 2012